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Nitrogenase, which catalyzes the reduction of N2 to NH3, is
composed of two separately purified proteins, the MoFe protein
and the Fe protein. The Fe protein contains a single Fe4S4 cluster
bridged between two identical subunits. That cluster has long
been believed to fluctuate between the 2+ and 1+ oxidation states
during enzyme turnover.1 This view was challenged in 1994,
when evidence for the formation of an all-ferrous form of the Fe
protein was obtained.2 Recently Mössbauer and EPR experiments
have confirmed the formation of an [Fe4S4]0 state of the Fe protein
following reduction by Ti(III) citrate, opening up the possibility
that such a state could be physiologically relevant.3 As there are
no model compounds with thiolate ligands in this oxidation state
no structural information is available. Fe K-edge EXAFS
analysis4 of the Ti(III) citrate reduced Fe protein provides the
first metrical details of the unprecedented all-ferrous [Fe4S4]0

cluster, whereas Fe-K and S-K edge studies provide information
on electronic structural changes. EXAFS analysis was performed
using theab initio GNXAS data analysis method.5,6

Three oxidation states of the Fe protein Fe4S4 cluster were
analyzed: 2+ produced by indigo disulfonate (IDS) oxidation
(1); 1+ produced by sodium dithionite (DT) reduction (2); and 0
produced by Ti(III) citrate reduction (3).7 The Fe-K X-ray
absorption edge spectra (Figure 1) show the typical structure of
an Fe4S4 cluster of approximately tetrahedrally coordinated Fe
atoms with a prominent 1sf 3d preedge transition at∼7112 eV
and a relatively featureless rising edge with a shoulder at∼7119
eV.8 The edges gradually change with reduction. The rising edge
exhibits a shift to lower energy of∼0.4 eV for the 1+ state (2)
and∼0.9 eV for the 0 state (3) relative to the 2+ state (1). The
intensity of the preedge transition is essentially the same for1
and2 but is reduced by>50% for 3, and there is also for the
preedge transition a gradual shift to lower energy with reduction.
There is also a progressive increase in intensity for the transition
around 7126 eV with reduction, which is consistent with changes
observed upon reduction for certain other Fe-S clusters.9

The edge energy position reflects the effective nuclear charge
at the photoabsorber. In general, the more reduced the oxidation
state, the lower the edge energy. The progressive energy shift is
thus a direct indication of the reduction at the iron atoms in the
cluster. The 1sf 3d transition is formally dipole forbidden but
derives intensity mainly from electric-dipole 3d-4p mixing
(which is high in a tetrahedral geometry).10-12 Several factors
influence the 1sf 3d energy position, intensity, and splitting
into more than one transition, including the spin state and effective
charge, geometry, and ligand type.12 The observation that the 1s
f 3d transition is at lower energy and has a lower intensity for
3 is consistent with the Fe absorbers being at a lower formal
oxidation state than those of1 and2.11 Sulfur K-edge XAS data
(Supporting Information) show that the first feature in the edge
spectrum around 2470 eV (a 1sf ψ* transition13) is shifted
toward higher energy by ca. 0.5 eV in3. A lower effective
nuclear metal charge leads to a higher binding energy for the
d-orbitals which requires higher energy for this edge transition
to appear.14,15 This observation thus again confirms that the 0
state of the cluster in3 contains Fe atoms whose redox state is
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Figure 1. Normalized Fe K-edge spectra of the IDS oxidized (1)
(- ‚‚ -), dithionite reduced (2) (s), and Ti(III) citrate reduced (3) (‚‚‚) Fe
protein samples. Inset: expansion of the 1sf 3d preedge region showing
the redox-dependent energy shift and intensity decrease.
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below that of1 and2 and, although as yet not quantified, indicates
that S is not the major redox active component.
Dramatic differences are seen in the EXAFS Fourier transform

of 3 as compared to1 and2 (Figure 2). In3, the first-shell peak
has a decreased amplitude, has a somewhat broader FWHM, and
is shifted to longer distance. The second-shell peak for3 is
likewise shifted to longer distance, and a reduction of∼65-75%
in amplitude is seen. The decreased amplitude indicates a
significantly less regular cluster structure, either a static disorder
around an average distance, a distribution of discrete Fe-Fe
distances, or a combination of both. Evidence that this does not
result from a breakup of the cluster is provided by Mo¨ssbauer
data3 and the fact that the redox process is reversible.2 Excellent
fits were obtained to the EXAFS data of1 and2 by assuming a
typical Fe4S4 structure,16 and the results are consistent with
previous studies of the 2+17 and 1+18 states. Theσ2 parameters
(related to Debye-Waller factors; reflecting thermal vibration and
static disorder) for both states were small and of the order expected
for the symmetry and flexibility19 of these cluster types.
It was impossible to fit the data of3 with an analogous Fe4S4

model of longer single Fe-S and Fe-Fe distances. Theσ2

parameters for the second shell consistently refined to very large
values (>0.02 Å2) at a distance of 2.66 Å, and the EXAFS residual
(øobs - øfit) clearly showed the presence of an unfit frequency.
With the inclusion of a second Fe-Fe contribution at a short
distance, this residual was completely eliminated, the overall
quality of the fit was significantly improved (Table 1), and the
second-shell Fourier transform peak was excellently fit. The best
fit to the data was achieved by using a coordination number of 2
for a short Fe-Fe interaction at 2.53 Å and 1 for a long Fe-Fe
interaction at 2.77 Å.20 The interference of these two Fe-Fe
waves accounts for the decreased amplitude of the second-shell
peak in the Fourier transform (Figure 2). The Fe-Fe distance
of 2.53 Å is intriguing, as it is much shorter than those seen in
Fe4S4 model complexes of higher oxidation states (∼2.75 Å).21

Similar short Fe-Fe distances were observed in the all-ferrous

PN state of the nitrogenase P clusters.9,22 A single Fe-S wave
with a coordination number of 4 at a distance of 2.36 Å was also
established, consistent with the higher R of the first-shell peak
in the Fourier transform. This Fe-S distance is significantly
longer than those in the lower oxidation state clusters.23

Although the Fe-Sσ2 value was low, fits were also performed
using two Fe-S contributions and, as shown in Table 1, the
inclusion of a second Fe-S wave made a minor improvement to
the quality of the fit.24 The best split-shell fit to the data was
achieved with 1 short Fe-S distance of 2.29 Å and 3 long Fe-S
distances at 2.39 Å. A possible structural model with a 1:3 short-
to-long Fe-S distribution and a 2:1 short-to-long Fe-Fe distribu-
tion is that of a compressed Fe4S4 cluster, in which the “vertical”
Fe-Fe and Fe-S distances are shorter and the “horizontal” Fe-
Fe and Fe-S distances and the Fe-S(thiolate) distances are
longer.25 Such a model would be consistent with the increased
trend in flexibility established for models in the 2+ vs the 1+
state26 and would give an expansion of the volume of the Fe4S4
cube from 11.85 Å3 (2+) to 12.17 Å3 (1+) to 13.14 Å3 (0) upon
reduction. This work thus provides the first metrical details of
an all-ferrous [Fe4S4]0 cluster.
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Figure 2. Comparison of non-phase shift corrected Fourier transforms
of 1 (- - -), 2 (s), and3 (‚‚‚).

Table 1. GNXAS Fit Results for the [Fe4-S4]0 Statea

Fe-S (Å) 2.35 2.37 2.29
coord no. 4 4 1
σ2 (Å2) 0.002 0.005 0.002
Fe-S (Å) 2.39
coord no. 3
σ2 (Å2) 0.003
Fe-Fe (Å) 2.66 2.53 2.52
coord no. 3 2 2
σ2 (Å2) 0.024 0.007 0.008
Fe-Fe (Å) 2.77 2.77
coord no. 1 1
σ2 (Å2) 0.005 0.005
R(fit) 0.278× 10-6 0.162× 10-6 0.159× 10-6

a k3-weighted data fit in thek-range 4.2-17 Å-1
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